Triple Science: Physics equations to select and use These are the only equations given in the exam

Equation number	Word equation	Symbol equation
1 HT	pressure due to a column of liquid = height of column × density of liquid × gravitational field strength (g)	$p = h \rho g$
2	(final velocity) ² – (initial velocity) ² = 2 × acceleration × distance	$v^2 - u^2$ = 2 a s
3 HT	force = change in momentum time taken	$F = \frac{m \Delta v}{\Delta t}$
4	elastic potential energy = 0.5 × spring constant × (extension) ²	$E_e = \frac{1}{2} k e^2$
5	change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = m \ c \ \Delta \theta$
6	period = 1/frequency	
7	magnification = image height object height	
8 HT	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	F = B I l
9	thermal energy for a change of state = mass × specific latent heat	E = m L
10 HT	potential difference across primary coil potential difference across secondary coil number of turns in primary coil number of turns in secondary coil	$\frac{V_p}{V_s} = \frac{n_p}{n_s}$
11 HT	potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_s I_s = V_p I_p$
12	For gases: pressure × volume = constant	p V = constant